STL源码剖析之vector¶
0.导语¶
vector的数据安排以及操作方式,与array非常相似。两者的唯一差别在于空间的运用的灵活性,array是静态的,一旦配置了就不能改变,而 vector是动态空间,随着元素的加入,它的内部机制会自行扩充空间以容纳新元素。下面一起来看一下vector的"内部机制",怎么来实现空间配置策略的。
1.vector¶
在_Vector_base
中开头有两行比较难理解,下面一个一个分析:
1.1 _Tp_alloc_type¶
开头处定义:
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template rebind<_Tp>::other _Tp_alloc_type;
在__gnu_cxx::__alloc_traits
中:对应文件为:ext/alloc_traits.h
template<typename _Tp>
struct rebind
{ typedef typename _Base_type::template rebind_alloc<_Tp> other; };
等价于
typename __gnu_cxx::__alloc_traits<_Alloc>::template rebind<_Tp>::other
等价于:
typename _Base_type::template rebind_alloc<_Tp>
而_Base_type
是:
typedef std::allocator_traits<_Alloc> _Base_type;
所以上述等价于:
typename std::allocator_traits<_Alloc>::template rebind_alloc<_Tp>
继续到allocator_traits
中寻找
找到了:
template<typename _Up>
using rebind_alloc = allocator<_Up>;
于是:
std::allocator_traits<_Alloc>::template rebind_alloc<_Tp>
等价于:
allocator<_Tp>
小结
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template rebind<_Tp>::other _Tp_alloc_type;
等价于:
typedef allocator<_Tp> _Tp_alloc_type
1.2 pointer¶
而pointer
:
typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
pointer;
等价于:
typedef typename __gnu_cxx::__alloc_traits<allocator<_Tp>>::pointer
pointer;
根据下面两行:
typedef std::allocator_traits<_Alloc> _Base_type;
typedef typename _Base_type::pointer pointer;
又等价于:
typedef std::allocator_traits<_Alloc>::pointer
pointer;
在allocator_traits
中找到下面:
/**
* @brief The allocator's pointer type.
*
* @c Alloc::pointer if that type exists, otherwise @c value_type*
*/
typedef __pointer pointer;
注释中说了如果存在就是Alloc::pointer
,否则为value_type *
。
小结
typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
pointer;
// 或者
typedef typename __gnu_cxx::__alloc_traits<allocator<_Tp>>::pointer
pointer;
等价于
/**
* @brief The allocator's pointer type.
*
* @c Alloc::pointer if that type exists, otherwise @c value_type*
*/
typedef __pointer pointer;
如果存在_Tp_alloc_type::pointer
也就是allocator<_Tp>
存在就是allocator<_Tp>::pointer
,
这个看allocator.h
源码:
typedef _Tp* pointer;
否则为value_type*
。而value_type
为:
typedef typename _Alloc::value_type value_type;
所以value_type*
推导出为:
_Tp::value_type*
1.3 vector的内存管理¶
_Vector_base
中有一个内存管理器_Vector_impl
类,该结构体继承allocator
(根据上述1.1等价条件得出)。
template<typename _Tp, typename _Alloc>
struct _Vector_base {
//__alloc_traits -> allocator_traits
// typedef allocator<_Tp> _Tp_alloc_type
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind<_Tp>::other _Tp_alloc_type;
// _Tp::value_type* or _Tp*
typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
pointer;
struct _Vector_impl
: public _Tp_alloc_type {
pointer _M_start; // 使用空间起始位置
pointer _M_finish; // 使用空间结束位置
pointer _M_end_of_storage; // 可使用空间结束位置
_Vector_impl()
: _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0) {}
_Vector_impl(_Tp_alloc_type const &__a)
// vector数据交换,只交换内存地址,不交换数据
void _M_swap_data(_Vector_impl &__x)
_GLIBCXX_NOEXCEPT
{
std::swap(_M_start, __x._M_start);
std::swap(_M_finish, __x._M_finish);
std::swap(_M_end_of_storage, __x._M_end_of_storage);
}
};
public:
typedef _Alloc allocator_type;
// 前面我们知道_Vector_impl继承自allocator分配器,而这个又是_Tp_alloc_type,所以这里返回的就是_M_impl的基类。
_Tp_alloc_type &
_M_get_Tp_allocator()
_GLIBCXX_NOEXCEPT
{ return *static_cast<_Tp_alloc_type *>(&this->_M_impl); }
const _Tp_alloc_type &
_M_get_Tp_allocator() const
_GLIBCXX_NOEXCEPT
{ return *static_cast<const _Tp_alloc_type *>(&this->_M_impl); }
allocator_type // 获取传递进来的分配器
get_allocator() const
_GLIBCXX_NOEXCEPT
{ return allocator_type(_M_get_Tp_allocator()); }
_Vector_base()
: _M_impl() {}
_Vector_base(const allocator_type &__a)
_GLIBCXX_NOEXCEPT
: _M_impl(__a) {}
_Vector_base(size_t __n)
: _M_impl() { _M_create_storage(__n); }
_Vector_base(size_t __n, const allocator_type &__a)
: _M_impl(__a) { _M_create_storage(__n); }
#if __cplusplus >= 201103L
_Vector_base(_Tp_alloc_type&& __a) noexcept
: _M_impl(std::move(__a)) { }
// 移动构造函数,只交换3个指针,不copy数据
_Vector_base(_Vector_base&& __x) noexcept
: _M_impl(std::move(__x._M_get_Tp_allocator()))
{ this->_M_impl._M_swap_data(__x._M_impl); }
_Vector_base(_Vector_base&& __x, const allocator_type& __a)
: _M_impl(__a)
{
if (__x.get_allocator() == __a)
this->_M_impl._M_swap_data(__x._M_impl);
else
{
size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
_M_create_storage(__n);
}
}
#endif
~_Vector_base()
_GLIBCXX_NOEXCEPT
{
_M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
- this->_M_impl._M_start);
}
public:
_Vector_impl _M_impl;
pointer _M_allocate(size_t __n) {
typedef __gnu_cxx::__alloc_traits <_Tp_alloc_type> _Tr;
return __n != 0 ? _Tr::allocate(_M_impl, __n) : 0; // 同_M_deallocate,一直往后调用的就是malloc函数
}
void _M_deallocate(pointer __p, size_t __n) {
typedef __gnu_cxx::__alloc_traits <_Tp_alloc_type> _Tr;
if (__p)
_Tr::deallocate(_M_impl, __p, __n); // 最后调用allocator_traits的deallocate,而该函数又是根据传递进来的_M_impl进行deallocate,一直往后,最后调用的就是free函数
}
private:
void _M_create_storage(size_t __n) {
this->_M_impl._M_start = this->_M_allocate(__n);
this->_M_impl._M_finish = this->_M_impl._M_start;
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
}
};
小结:_Vector_base
专门负责vector
的内存管理,内部类_M_impl
通过继承_Tp_alloc_type
(也就是allocator)得到内存分配释放的功能,_M_allocate和_M_deallocate分别分配和释放vector所用内存,vector只需要负责元素构造和析构。
在vector中,默认内存分配器为std::allocator<_Tp>
template<typename _Tp, typename _Alloc = std::allocator<_Tp>>
class vector : protected _Vector_base<_Tp, _Alloc> {
}
vector代码中使用基类的内存函数及typedef等:
template<typename _Tp, typename _Alloc = std::allocator<_Tp>>
class vector : protected _Vector_base<_Tp, _Alloc> {
typedef _Vector_base<_Tp, _Alloc> _Base;
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
public:
typedef typename _Base::pointer pointer;
protected:
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_impl;
using _Base::_M_get_Tp_allocator;
}
2.vector迭代器¶
在vector中使用了两种迭代器,分别是正向__normal_iterator
与反向迭代器reverse_iterator
:
正向:
typedef __gnu_cxx::__normal_iterator <pointer, vector> iterator;
typedef __gnu_cxx::__normal_iterator <const_pointer, vector> const_iterator;
反向:
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
__normal_iterator
与reverse_iterator
都定义于stl_iterator.h,封装了vector元素的指针。
2.1 正向¶
template<typename _Iterator, typename _Container>
class __normal_iterator
{
protected:
_Iterator _M_current;
typedef iterator_traits<_Iterator> __traits_type;
public:
typedef _Iterator iterator_type;
// iterator必须包含的五种typedef
typedef typename __traits_type::iterator_category iterator_category;
typedef typename __traits_type::value_type value_type;
typedef typename __traits_type::difference_type difference_type;
typedef typename __traits_type::reference reference;
typedef typename __traits_type::pointer pointer;
_GLIBCXX_CONSTEXPR __normal_iterator() _GLIBCXX_NOEXCEPT
: _M_current(_Iterator()) { }
explicit
__normal_iterator(const _Iterator& __i) _GLIBCXX_NOEXCEPT
: _M_current(__i) { }
// Allow iterator to const_iterator conversion
template<typename _Iter>
__normal_iterator(const __normal_iterator<_Iter,
typename __enable_if<
(std::__are_same<_Iter, typename _Container::pointer>::__value),
_Container>::__type>& __i) _GLIBCXX_NOEXCEPT
: _M_current(__i.base()) { }
// Forward iterator requirements
reference
operator*() const _GLIBCXX_NOEXCEPT
{ return *_M_current; }
pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return _M_current; }
// 前置++
__normal_iterator&
operator++() _GLIBCXX_NOEXCEPT
{
++_M_current;
return *this;
}
// 后置++
__normal_iterator
operator++(int) _GLIBCXX_NOEXCEPT
{ return __normal_iterator(_M_current++); }
// 前置--
// Bidirectional iterator requirements
__normal_iterator&
operator--() _GLIBCXX_NOEXCEPT
{
--_M_current;
return *this;
}
// 后置--
__normal_iterator
operator--(int) _GLIBCXX_NOEXCEPT
{ return __normal_iterator(_M_current--); }
// 随机访问迭代器都要重载[]操作符
// Random access iterator requirements
reference
operator[](difference_type __n) const _GLIBCXX_NOEXCEPT
{ return _M_current[__n]; }
// +=操作符 跳跃n个difference_type
__normal_iterator&
operator+=(difference_type __n) _GLIBCXX_NOEXCEPT
{ _M_current += __n; return *this; }
// +操作符 跳跃n个difference_type
__normal_iterator
operator+(difference_type __n) const _GLIBCXX_NOEXCEPT
{ return __normal_iterator(_M_current + __n); }
// -=操作符 后退n个difference_type
__normal_iterator&
operator-=(difference_type __n) _GLIBCXX_NOEXCEPT
{ _M_current -= __n; return *this; }
// -操作符 后退n个difference_type
__normal_iterator
operator-(difference_type __n) const _GLIBCXX_NOEXCEPT
{ return __normal_iterator(_M_current - __n); }
const _Iterator&
base() const _GLIBCXX_NOEXCEPT
{ return _M_current; }
};
_M_current是指向迭代器位置的指针,这是一个随机访问型指针,operator+和operator-等移动操作可以直接移动到目的地,非随机访问型指针只能一步步移动。
2.2 反向¶
vector还会使用reverse_iterator,即逆序迭代器,顾名思义,其移动方向与普通迭代器相反
template<typename _Iterator>
class reverse_iterator
: public iterator<typename iterator_traits<_Iterator>::iterator_category,
typename iterator_traits<_Iterator>::value_type,
typename iterator_traits<_Iterator>::difference_type,
typename iterator_traits<_Iterator>::pointer,
typename iterator_traits<_Iterator>::reference>
{
protected:
_Iterator current;
typedef iterator_traits<_Iterator> __traits_type;
public:
typedef _Iterator iterator_type;
typedef typename __traits_type::difference_type difference_type;
typedef typename __traits_type::pointer pointer;
typedef typename __traits_type::reference reference;
// 省略不重要的代码
// 该迭代器是从后面end()开始,需要往前一步,才可以获取到有效的迭代器位置
reference
operator*() const
{
_Iterator __tmp = current;
return *--__tmp;
}
// 通过调用上述*操作符直接实现
pointer
operator->() const
{ return &(operator*()); }
// 前置++操作符完成后退任务
reverse_iterator&
operator++()
{
--current;
return *this;
}
// 后置++
reverse_iterator
operator++(int)
{
reverse_iterator __tmp = *this;
--current;
return __tmp;
}
// 前置--操作符完成前进任务
reverse_iterator&
operator--()
{
++current;
return *this;
}
// 后置--
reverse_iterator
operator--(int)
{
reverse_iterator __tmp = *this;
++current;
return __tmp;
}
// +操作符
reverse_iterator
operator+(difference_type __n) const
{ return reverse_iterator(current - __n); }
// +=操作符
reverse_iterator&
operator+=(difference_type __n)
{
current -= __n;
return *this;
}
// -操作符
reverse_iterator
operator-(difference_type __n) const
{ return reverse_iterator(current + __n); }
// -=操作符
reverse_iterator&
operator-=(difference_type __n)
{
current += __n;
return *this;
}
// []操作符
reference
operator[](difference_type __n) const
{ return *(*this + __n); }
};
3.vector的数据结构¶
vector内存由_M_impl中的M_start,_M_finish,_M_end_of_storage三个指针管理,所有关于地址,容量大小等操作都需要用到这三个指针:
iterator begin() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_start); }
iterator end() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_finish); }
reverse_iterator rbegin() noexcept
{ return reverse_iterator(end()); }
reverse_iterator rend() noexcept
{ return reverse_iterator(begin()); }
size_type size() const _GLIBCXX_NOEXCEPT
{ return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
size_type capacity() const _GLIBCXX_NOEXCEPT
{ return size_type(this->_M_impl._M_end_of_storage - this->_M_impl._M_start); }
bool empty() const _GLIBCXX_NOEXCEPT
{ return begin() == end(); }
_M_finish和_M_end_of_storage之间的空间没有数据,有时候这是一种浪费,c++11提供了一个很有用的函数shrink_to_fit(),将这段未使用空间释放,主要调用了下面代码,
template<typename _Alloc>
bool vector<bool, _Alloc>::
_M_shrink_to_fit()
{
if (capacity() - size() < int(_S_word_bit)) // 64位系统为64bytes
return false;
__try
{
_M_reallocate(size());
return true;
}
__catch(...)
{
return false;
}
}
template<typename _Alloc>
void vector<bool, _Alloc>::
_M_reallocate(size_type __n)
{
_Bit_type* __q = this->_M_allocate(__n);
this->_M_impl._M_finish = _M_copy_aligned(begin(), end(),
iterator(__q, 0));
this->_M_deallocate();
this->_M_impl._M_start = iterator(__q, 0);
this->_M_impl._M_end_of_storage = __q + _S_nword(__n);
}
而_M_copy_aligned
通过两个std::copy实现:
第一次swap把__first
的指针与__last
的指针之间的数据拷贝到__result
指针所指向的起始位置。
第二次swap获得__last
的指针对应的迭代器。
iterator
_M_copy_aligned(const_iterator __first, const_iterator __last,
iterator __result)
{
// _Bit_type * _M_p; _Bit_type为unsigned long类型
_Bit_type* __q = std::copy(__first._M_p, __last._M_p, __result._M_p);
return std::copy(const_iterator(__last._M_p, 0), __last,
iterator(__q, 0));
}
先分配size()大小的内存空间,用于存储begin()
与end()
之间的数据,释放原来的vector空间,新的vector只包含size()数量的数据,并修改_M_start
与_M_end_of_storage
指向。
4.vector构造与析构¶
//使用默认内存分配器
vector() : _Base() { }
//指定内存分配器
explicit vector(const allocator_type& __a) : _Base(__a) { }
//初始化为n个__value值,如果没指定就使用该类型默认值
explicit vector(size_type __n, const value_type& __value = value_type(),
const allocator_type& __a = allocator_type()): _Base(__n, __a)
{ _M_fill_initialize(__n, __value); }
//拷贝构造函数
vector(const vector& __x)
: _Base(__x.size(),
_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
{ this->_M_impl._M_finish =
std::__uninitialized_copy_a(__x.begin(), __x.end(),
this->_M_impl._M_start,
_M_get_Tp_allocator());
}
//c++11的移动构造函数,获取__x的M_start,_M_finish,_M_end_of_storage,并不需要数据拷贝
vector(vector&& ) noexcept
: _Base(std::move(__x)) { }
//从list中拷贝数据,也是c++11才有的
vector(initializer_list<value_type> __l,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
_M_range_initialize(__l.begin(), __l.end(), random_access_iterator_tag());
}
//支持vector使用两个迭代器范围内的值初始化,除了stl的迭代器,也可以是数组地址
template<typename _InputIterator,
typename = std::_RequireInputIter<_InputIterator>>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ _M_initialize_dispatch(__first, __last, __false_type()); }
//只析构所有元素,释放内存由vector_base完成
~vector() _GLIBCXX_NOEXCEPT
{ std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,_M_get_Tp_allocator()); }
5.vector¶
插入涉及到内存分配,动态调整,与一开始提到的vector与array区别,就在下面体现出:
typename vector<_Tp, _Alloc>::iterator
vector<_Tp, _Alloc>::insert(iterator __position, const value_type& __x)
{
const size_type __n = __position – begin();
//插入到最后一个位置,相当于push_back
if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage
&& __position == end())
{
_Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish, __x);
++this->_M_impl._M_finish;
}
else
{
_M_insert_aux(__position, __x);
}
return iterator(this->_M_impl._M_start + __n);
}
其中_M_insert_aux
实现:
template<typename _Tp, typename _Alloc>
void vector<_Tp, _Alloc>::_M_insert_aux(iterator __position, const _Tp& __x)
{
//内存空间足够
if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
{
_Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
_GLIBCXX_MOVE(*(this->_M_impl._M_finish
- 1)));
++this->_M_impl._M_finish;
//__position后的元素依次向后移动一个位置
_GLIBCXX_MOVE_BACKWARD3(__position.base(),
this->_M_impl._M_finish - 2,
this->_M_impl._M_finish – 1);
//目标地址赋值
*__position = _Tp(std::forward<_Args>(__args)...);
}
else
{
//内存加倍
const size_type __len =
_M_check_len(size_type(1), "vector::_M_insert_aux");
const size_type __elems_before = __position - begin();
pointer __new_start(this->_M_allocate(__len));
pointer __new_finish(__new_start);
__try
{
//给position位置赋值
_Alloc_traits::construct(this->_M_impl,
__new_start + __elems_before,
std::forward<_Args>(__args)...);
__x);
__new_finish = 0;
//拷贝position位置前元素
__new_finish = std::__uninitialized_move_if_noexcept_a
(this->_M_impl._M_start, __position.base(),
__new_start, _M_get_Tp_allocator());
++__new_finish;
//拷贝position位置后元素
__new_finish
= std::__uninitialized_move_if_noexcept_a
(__position.base(), this->_M_impl._M_finish,
__new_finish, _M_get_Tp_allocator());
}
__catch(...)
{
if (!__new_finish)
_Alloc_traits::destroy(this->_M_impl,
__new_start + __elems_before);
else
std::_Destroy(__new_start, __new_finish, _M_get_Tp_allocator());
_M_deallocate(__new_start, __len);
__throw_exception_again;
}
//析构原vector所有元素
std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
_M_get_Tp_allocator());
//释放原vector内存空间
_M_deallocate(this->_M_impl._M_start,
this->_M_impl._M_end_of_storage,this->_M_impl._M_start);
//vector内存地址指向新空间
this->_M_impl._M_start = __new_start;
this->_M_impl._M_finish = __new_finish;
this->_M_impl._M_end_of_storage = __new_start + __len;
}
}
其中_M_check_len
:
size_type
_M_check_len(size_type __n, const char* __s) const
{
if (max_size() - size() < __n)
__throw_length_error(__N(__s));
const size_type __len = size() + std::max(size(), __n); //如果n小于当前size,内存加倍,否则内存增长n。
return (__len < size() || __len > max_size()) ? max_size() : __len;
}
内存分配策略并不是简单的加倍,如果n小于当前size,内存加倍,否则内存增长n。
学习资料:
侯捷《STL源码剖析》
https://www.cnblogs.com/coderkian/p/3888429.html